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Abstract 

The orexin (hypocretin) is one of the hypothalamic neuropeptides that 

plays a critical role in some behaviors including feeding, sleep, arousal, 

reward processing, and drug addiction. This variety of functions can be 

described by a united function for orexins in translating states of 

heightened motivation, for example during physiological requirement 

states or following exposure to reward opportunities, into planned goal-

directed behaviors. An addicted state is characterized by robust activation 

of orexin neurons from the environment, which triggers downstream 

circuits to facilitate behavior directed towards obtaining the drug. Two 

orexin receptors 1 (OX1R) and 2 (OX2R) are widely distributed in the 

brain. Here, we will introduce and describe the cortical and subcortical 

brain areas involved in addictive-like behaviors and the impact of orexin 

on addiction.  

Keywords: Orexin, Reward pathway, Addiction, Cortical, Subcortical. 

 

Introduction  

Neurons that produce orexin are scattered mediolaterally within the 

dorsomedial hypothalamus (DMH) and the lateral hypothalamus (LH) (1, 

2). LH orexin neurons are more closely associated with reward functions 

than DMH neurons. These neuropeptides including orexin-A (OXA) and 

orexin-B (OXB) derive from a common precursor gene in most neurons 

that are situated merely in the perifornical area (PFA) of the LH (1-3). 

OXA is a 33 amino acid with two intrachain disulfide bonds which has 

equal affinity for both receptors (OX1R and OX2R) and a smaller one 
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OXB is a linear 28 amino acid with higher affinity to OX2R (4-6) (Figure 

1). There have been numerous studies on orexin/hypocretin and addiction 

since 2000, which demonstrate the roles of orexins in drug-seeking and 

addiction in various cortical and subcortical areas. Previous research has 

demonstrated that systemic heroin self-administration was alleviated by 

the administration of opioid antagonists into the lateral hypothalamus (7). 

Furthermore, a conditioned preference for places is induced by opioid 

application to the LH (8). Apparently, in the dorsomedial hypothalamus 

and perifornical area, orexinergic neurons seem to play an important role 

in the negative reinforcement of withdrawal symptoms (9, 10). In mice 

lacking orexin, significant decreases in somatic signs of naloxone 

precipitated morphine withdrawal syndrome were detected (11). OX1R is 

the main receptor that has a high impact on drug-seeking activities and 

exhibits an important role in opioid addiction. Many studies have shown 

that OX1R antagonists can block addiction-related behaviors among 

different addiction drugs for instance cocaine, nicotine, and alcohol, 

suggesting that orexin-dependent treatments could serve as the next 

treatment for drug addiction (12-14). Cocaine or morphine activates orexin 

neurons of LH that are completely associated with a conditioned 

preference for environmental contexts. They also showed that blocking 

OX1R leads to the restoration of extinguished drug-seeking (10). In 

addition, human investigation shows that drug addicts have raised levels 

of orexin in their cerebrospinal fluid, which might be linked to greater 

activation of lateral hypothalamic orexinergic neurons in response to the 

substance of abuse (15). Furthermore, morphine antinociceptive tolerance 

is significantly reduced in rats following intracerebroventricular (i.c.v) 

administration of an OX1R antagonist (16). Further, Harris GC et al; 2006, 



4 
 

showed that naloxone-induced withdrawal symptoms of morphine were 

decreased by systemic inhibition of OX1R via injection of SB-334867 (9). 

Adaptive changes in chronic morphine treatment may contribute to the 

development of morphine dependency through the OX1R (17). Evidence 

of an increase in intracellular calcium concentration by OX1R supports 

this conclusion (18, 19). G-protein coupled receptor dissociation is 

involved in the desensitization of mu-opioid receptors due to increased 

intracellular calcium and calcium-calmodulin-dependent kinases (20). 

Moreover, morphine antinociceptive tolerance in rats was reduced by i.c.v. 

injection of selective OX1R antagonist, SB-334867. 

 This finding is an opportunity to succinctly re-emphasize the possible role 

of OX1R on morphine tolerance due to chronic administration of morphine 

adaptive changes (17). While the OX1R is mainly involved in motivation 

and reward, the OX2R is contributed to the modulation of the sleep/wake 

cycle and energy homeostasis. National Institute on Drug Abuse listed 

orexin-based therapies as a promising treatment goal for drug dependence 

(21). Therefore, orexin shows many contributions to addiction. To find the 

neural correlates for the contribution of orexin to addiction, in the present 

review, we will concentrate on the different roles of orexin in drug 

addiction in different brain areas. 

Ventral tegmental area 

The ventral tegmental area (VTA) is a group of neurons positioned near 

the midline on the floor of the midbrain that included dopaminergic, 

gamma-aminobutyric acid (GABA)ergic, and glutamatergic neurons. 

VTA plays the main effect in some procedures including reward and 

cognition (22), drug-seeking, and natural reward systems of the brain. 
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VTA is implicated in aversive addictive behaviors, for instance, behavioral 

sensitization caused by amphetamine or mu-opioid receptor agonists (23). 

VTA is similarly essential for stress-, cue-, and drug-primed reinstatement 

in rodents self-administering cocaine (24, 25) or heroin (26, 27). The 

dopaminergic neurons respond to reward-related stimuli (28) and 

implicate in the reinforcing activities of abused substances (29, 30). 

Opiates indirectly raise dopamine transmission by reduction of inhibitory 

input onto dopamine neurons (31, 32).  

It should be noted that LH orexin neurons are the main neurons that send 

extensive projections to the VTA (33) and play a key role in motivation 

and reward in response to cocaine (34). Several studies showed that 

activating orexin receptors in the VTA exhibits a significant impact on the 

reinstatement of extinguished reward-seeking (33). Harris GC et al; 2005, 

demonstrated that the activity of these neurons is powerfully linked with 

cue-reinstated drug and food-seeking behaviors (35). After seven years, 

Mahler et al; 2012, used orexin for direct intra-VTA injection and showed 

the reward-seeking behaviors in extinguished rodents in an OX1R-

dependent style (36, 37). They also displayed that systemic or intra-VTA 

injection of an antagonist of OX1R significantly diminished the 

reinstatement of extinguished seeking behaviors for cocaine, alcohol, or 

morphine produced by drug-predicting cues or Yohimbine (36, 38). 

Morphine dependence of the orexin-deficient mice is decreased by the 

intra-VTA administration of orexin receptor antagonists (11). Moreover, 

behavioral sensitization to cocaine (39), cocaine self-injection, and cue-

induced reinstatement are reduced by the orexin antagonists in the VTA 

(40). In addition, the activity of VTA dopamine neurons is inhibited by 
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dynorphin as a component of orexin neurons. Orexin in the VTA simplifies 

drug-related behaviors by reducing the dynorphin effects (41). Orexin 

signaling in VTA causes cue-induced demand for cocaine (42). Drug-

associated sensory cues augment motivation for drugs and the orexin 

system contributes to this stimulus-driven motivation (42). The orexin 

receptors in the VTA are contributed to the sensitization to the expression 

of morphine-induced preference in rats (43). OX projections to VTA by 

regulating prefrontal control of dopamine (DA) release may cause 

motivated behaviors in response to conditioned stimuli (44). Orexin in the 

VTA exhibits important roles in reward processing and drug abuse in 

humans, as already established well in rodents (45). OX1R signaling 

within the VTA is important to regulate cue-induced reinstatement of 

cocaine-seeking (40). Blockade of VTA OX1R signaling may reduce NAc 

dopamine in response to drug cue exhibition (40). OXA in the VTA 

enhanced the motivation to self-administration cocaine (46). Therefore, the 

OXA may not impact cocaine self-administration when conditions to get 

cocaine need low effort. Altogether, these data confirm that orexin in the 

VTA represents a significant contribution to the motivation in response to 

drugs, cue-induced reinstatement of drug-seeking behaviors, sensitization 

to the expression of morphine-induced preference, stimulus-driven 

motivation, and behavioral sensitization to drugs of addiction. VTA is the 

main target by which orexin signaling modifies reward behaviors (42). 

Orexin inputs to the VTA seem to display a pivotal role in the regulation of 

cocaine intake when conditions to get the drug need a high level of motivation 

(47). 

Rostromedial tegmental nucleus 
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Construction in the midbrain, the rostromedial tegmental nucleus (RMTg), 

or tail of the VTA, acts as a 'master brake' on the dopamine system (48, 

49). It appears that variations of the RMTg action may contribute to the 

reward-estimation error signal by VTA dopamine neurons (48, 50). This 

signal is essential to understanding the alterations among anticipated and 

detected rewards (51). GABAergic projections from the RMTg are 

disinhibited by acute morphine withdrawal and stimulation of VTA 

dopaminergic neurons in the rat (52-54). RMTg neurons activation by 

infusion of amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid 

(AMPA) significantly decreased ethanol consumption, but RMTg 

inhibition increased it (55-58). Furthermore, the RMTg is known as a 

brake of the dopamine system, so it may be implicated in the circuits 

regulating alcohol addiction through modulating dopamine release in the 

NAc (59). Intra-VTA injection of suvorexant (orexin receptor antagonist) 

would reduce the rewarding effect of self-administered cocaine, while 

intra-RMTg orexin peptide injection would increase the aversive value of 

self-administered cocaine, thereby suppressing drug-taking. Furthermore, 

Flanigan ME et al; 2020, discovered that the orexin signaling in 

GABAergic lateral habenula neurons moderates aggressive behavior in 

male mice (60). Also, systematic administration of suvorexant 

successfully lowers motivated cocaine use, and this reduction is linked to 

decreases in the subjective reward of cocaine self-administered (61). 

Therefore, orexin in RMTg affects the aversive and aggressive value of 

drugs probably through the brake of the dopamine system. 

Amygdala 
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In the medial temporal lobe is the amygdala which has 13 subregions, such 

as the basolateral amygdala (BLA) and the central amygdala (CeA) (62, 

63). Studies on humans have demonstrated that the amygdala has a main 

role in drug-seeking behavior (64, 65). In addition to reinforcing drug-

seeking behaviors, the BLA affects reconsolidating drug-related memory 

(53, 66). Additionally, inhibition of the CeA reduces conditioned place 

preference (CPP) reinstatement caused by foot shock and morphine with 

concurrent reduction of Fos protein expression in the VTA and the BNST, 

but Fos expression in the bed nucleus of the stria terminalis (BNST) was 

not changed by CeA modulation (67). The orexinergic projections to the 

amygdala adjust both positive and negative reinforcing features of the 

drugs of abuse (10). These projections from orexin neurons densely 

innervate the CeA, thus this area may be one of the main regions for orexin 

effects on drug-seeking. In addition, hypothalamic orexin neurons have 

mutual amygdala projections and display a part in resilience and stress-

related responses (36, 68). According to prior electrophysiological and 

behavioral investigations, OXA affects anxiety-like behaviors by altering 

the spontaneous firing activity of CeA neurons (69). Furthermore, OX1R 

antagonist reduces fear-potentiated startle responses in rats, which is a 

model of conditioned fear involving the CeA (70). A further role of OX is 

the modulation of fear responses. OX neurons send projections to the 

amygdala which is important in fear learning and fear expression. The 

central nucleus (CeA) of the amygdala receives the highest density of OX-

positive fibers (71). Systemic or intra-CeA injection of OX1R antagonist 

decreased the expression of conditioned fear. Therefore, the CeA 

orexinergic pathway can modify conditioned fear via phospholipase C 

(PLC) and sodium-calcium exchanger activity and that antagonism of 
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OX1R may be a putative treatment for fear-related disorders (71). 

Furthermore, the administration of orexin into CeA modifies feeding and 

gastric motility in rats (72). Since orexin modifies amygdala-dependent 

threat learning, the orexin system may represent a potential treatment for 

aversive memories that result in fear and anxiety disorders (73). Blockade 

of OX1R in the amygdala significantly diminished memory acquisition, 

decreased anxiety, and reduced sensitized fear in the SB-334867 group. 

Application of SB-334867 to the amygdala following each fear memory 

test significantly reduced freezing (74). Furthermore, orexin modifies the 

hippocampal-dependent memory through the basolateral amygdala (75). It 

has been shown that intra-CeA administration of SB-334867 reduced 

cocaine self-administration and stress-induced reinstatement of cocaine-

seeking behavior (76). Therefore, it can be concluded that orexin neuron 

projections to the amygdala display a massive role in the fear responses, 

anxiety-like behaviors, and stress-related responses associated with 

addiction.  

 

Prefrontal cortex 

The prefrontal cortex (PFC) in the front part of the frontal lobe involves 

some cognitive functions (77) and the reinstatement of drug-seeking 

behavior (78). The medial prefrontal cortex (mPFC) adjusts seeking 

behavior for most drugs of abuse such as cocaine and ethanol (79, 80). Mu-

opioid receptors in the PFC are functionally associated with cocaine 

craving (81) and alcohol consumption (82).  

The mPFC has been proposed as one of the three regions of the brain to 

impact the behavioral characteristics of ethanol-seeking through a 
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dopamine-related pathway (83-85). There is a significant interaction 

between PFC and VTA, as a key node in the control of brain vigilance (86, 

87). Some reports have shown that circuits of VTA-mPFC are implicated 

in morphine reward (88). The orexin-VTA pathway is also thought to show 

an effect on sleep-wake regulation, according to studies. Injection of 

orexin-1 into the ventricles stimulates VTA dopamine neurons which 

project to the PFC and Nucleus accumbens (Nac) shell and can be 

contributed to the addiction (89). Furthermore, intra-VTA orexin infusion 

raises PFC dopamine efflux and vigilance (90). Evidence showed that 

OX1Rs in the mPFC augment the alcohol relapse and promote alcohol 

intake (91). Orexin neurons in the LH show a vital role in arousal and the 

execution of mPFC-related higher cognitive functions (92). Injection of 

OXA into VTA enhances DA release in the prefrontal cortex while SB-

334867 diminishes cocaine-induced DA in NAc, showing modulation of 

VTA DA neurons by orexin inputs (93). Thus, it can be concluded that in 

mPFC, orexin may involve in ethanol-seeking and drug-seeking behaviors 

directly or through the dopaminergic pathways. 

 

Nucleus accumbens (NAc) 

NAc is a region of the preoptic portion of the hypothalamus in the basal 

forebrain rostral region (94, 95). Appetitive motivation in drug relapse is 

mediated by the NAc (96). The NAc has accompanied the acquisition and 

elicitation of programmed behaviors and heightened opioid susceptibility 

in addiction. Following persistent abstinence, the pleasurable experience 

of substance use and environmental cues can trigger relapse and are 

effective mediators of drug-seeking behavior. Moreover, morphine via 
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cholinergic and cannabinoid systems can modulate dopaminergic 

transmission in VTA-NAc circuits (97-102). Moreover, during cocaine 

cue-induced reinstatement, Fos activated in the NAc afferents to the VTA 

(103). Repeated injections of cocaine are used to enhance the inhibitory 

transmission from the NAc inputs onto the VTA GABAergic neurons 

disinhibiting VTA dopamine neurons (104).  

NAc receives heavy orexin projections that exhibit a significant role in 

drug-seeking like morphine reinstatement (105, 106). According to the 

evidence, stress-induced drug relapse can be modulated through the effects 

of the orexinergic system on the NAc. OXA moderates the dopaminergic 

transmission and enhances dopamine responses in response to 

psychostimulants in the NAc shell (107). Activation of the NAc shell 

during withdrawal is required for the OX1R function and may be 

accomplished by the indirect action of LH orexin neurons (9). It has been 

shown that orexin reduced postsynaptic N-methyl-D-aspartate (NMDA) 

currents and improved GABA currents but did not impact glycine-

activated conductance in the NAc. Thus, the hypocretin peptides may be 

inhibitory, possibly through binding to OX1R (108).  

Intra-paraventricular injection of OXA augmented DA levels in the NAc 

(109), showing that this nucleus may be the main relay for the effects of 

OXA on the mesolimbic DA system and reward-seeking behavior (110). 

Orexin through activation of OX1R is important for the expression of 

morphine withdrawal. NAc Shell activation during withdrawal is 

dependent on OX1R function and is likely mediated by the indirect action 

of LH orexin neurons (9). It has been demonstrated that SB-334867 

reduced dopamine outflow in the NAc shell evoked by acute amphetamine 
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treatment and that activation of orexin neurons in hypothalamic regions 

was increased during the expression of amphetamine sensitization (111). 

It was proposed that orexins could reveal a central impact on addiction 

through action on NAc neurons. Therefore, the inhibitory role of orexin in 

the NAc may be completed through changes in drug relapse and 

withdrawal behaviors. 

 

Locus coeruleus (LC) 

The locus coeruleus (LC) nucleus, bilaterally situated near the fourth 

ventricle, is the core noradrenergic assembly comprising neurons that have 

a high density of μ-opioid receptors (MORs). Furthermore, LC neurons 

experience substantial tolerance resulting from continuing opiate exposure 

(112-114). Earlier studies demonstrated the development of receptor 

desensitization by opioids in LC neurons (115-118). LC participates in the 

expression of somatic signs of opiate withdrawal syndrome. Behavioral 

responses to opioid withdrawal are mimicked by the electrical stimulation 

of LC neurons (119).  

In LC neurons, the expression of OX1R is high (120, 121) and LC collects 

extensive orexinergic efferents (122). Naloxone-elicited neuronal activity 

in the LC is suppressed by SB-334867 (selective orexin-1 receptor 

antagonist) administration before each morphine injection. Our previous 

study revealed that blockade of OX1R is contributed to the development 

of morphine dependency through reduction of the cAMP response 

element-binding protein (CREB) and Phospholipase C β3 (PLCβ3) levels 

in the LC of morphine-dependent rats (123). Furthermore, OX1R 

inhibition significantly reduced the augmentation of cAMP levels by the 

naloxone treatment in the LC neurons of morphine-dependent animals 

https://pubmed.ncbi.nlm.nih.gov/11250867/
https://pubmed.ncbi.nlm.nih.gov/11250867/
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(124). Orexin-A through activation of OX1R and a protein kinase C 

(PKC)-dependent mechanism promotes met-enkephalin-induced opioid 

receptor desensitization in rat locus coeruleus neurons (125). Moreover, 

morphine-induced analgesia can be inhibited by the long-term application 

of orexin into the thalamic paraventricular nucleus (126). Remarkably, 

both orexinergic and opioidergic systems affect through G-protein 

mediated signaling pathways. Orexin receptors through activation of 

OX1Rs and Gq-mediated pathway activate phospholipase C that 

promoting the synthesis of diacylglycerol (DAG). Then, DAG activates 

PKC leading to phosphorylation of μ-opioid receptors (125). It seems that 

orexins could play a pivotal role in modulating inhibitory and excitatory 

neurotransmitter systems and hence modulate LC neuronal responses 

during opiate withdrawal. 

 

Nucleus Paragigantocellularis (PGi)   

PGi is located in the rostral ventral medulla of the brain. It is a central brain 

area implicated in regulating cardiovascular and respiratory functions in 

response to sympathetic stimulation. In addition to sending collateral 

projections to the LC, PGi also links to the nucleus of the solitary tract 

(NTS). Furthermore, PGi neurons are widely distributed across parts of the 

brain that are essential for regulating nociception and autonomic function 

(127). The NAc, VTA, and LC are involved in reward production and 

addiction, primarily by receiving the lateral paragigantocellularis nucleus 

glutamatergic afferents (128, 129).  

The elimination of naloxone-precipitated morphine induces increased 

expression of c-Fos in the dorsomedial hypothalamus and perifornical area 
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orexinergic neurons (9). Additionally, during naloxone-precipitated 

morphine withdrawal, these neurons are activated (11). OX1R antagonism 

in PGi reduces naloxone precipitated morphine withdrawal symptoms in 

rats (130). In lateral Paragigantocellularis (LPGi), ORXA-induced 

antinociception is mainly mediated through the OX1R which might play a 

potential effect on processing the pain information associated with 

descending pain modulation (131). A decrease in the symptoms of 

withdrawal precipitated by naloxone is associated with the systemic and 

central administering of the OX1R antagonist SB-334867 (132). 

Moreover, in the LC nucleus, blocking of OX1R was observed to decrease 

the production of dependence on morphine (133). Further studies showed 

that inhibited OX1R in the LPGi nucleus greatly decreases the progression 

of behavioral symptoms and morphine dependence by injecting naloxone 

in morphine-dependent rodents (127, 134). Thus, LPGi is the essential 

region where OX1Rs are more densely distributed in this area and involved 

in the progression of morphine dependence. It seems that orexin in PGi of 

addicted animals is involved in the decrement of morphine dependency 

and withdrawal syndrome.  

Ventral Pallidum (VP) 

Rewarding stimuli and motivated behavior are the functions of the ventral 

Pallidum (VP) (135). VP GABA neurons are a great source of inhibitory 

input to the VTA (136). Population activity in the VTA dopamine neurons 

is related to the inhibition of the VP (137). VP involves in behaviors of 

drug dependence. Opiates inhibit ventral Pallidum neurons projecting onto 

dopamine neurons (138). Moreover, VP lesions inhibit morphine self-

administration (139). VP is one of several forebrain targets of the LH 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2934929/
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orexin neurons. LH orexin neurons project to a wide variety of forebrain 

targets, including the ventral pallidum (VP). The posterior half of the VP 

is particularly densely populated with orexin inputs (140). Consequently, 

OX1R and OX2R are expressed in VP neurons (141), sending mutual 

output to the LH (142). The results of studies indicate that OX1R is highly 

concentrated in VP (143), showing that the reward behavior may be 

modulated by this region. OX1R signaling in VP is a crucial target in 

opioid addiction. Inactivation of VP reduces heroin consumption in 

reinforcement (144) and morphine conditioned place preference 

expression (145). Remifentanil demand and seeking are reduced by the 

systemic administration of the selective OX1R antagonist. Inactivation of 

VP diminishes willingness to get the sweetness of reward (146). Therefore, 

effort-related choice behavior is regulated by the VP. The reward’s 

hedonic properties are mediated by the VP. Orexin signaling and reward’s 

hedonic properties are increased for sucrose by the intra-VP 

microinjections of orexin-A (147). Furthermore, the orexin system 

mediates the hedonic features of natural versus drug reward. This indicated 

that the hedonic hotspot of the posterior VP may also contribute to the 

orexin-induced enhancement of food's hedonic impact (148, 149) . 

Extinguished remifentanil seeking is reduced by the intra-VP 

administration of SB-334867. However, reinstatement behavior happens 

through a greater reward network where the VP is a part of it (150). Thus, 

this behavior is encouraged by the OX1R signaling at other locations (151, 

152). Furthermore, intra-VP administration of SB-334867 reduced 

reinstatement behavior in highly motivated animals. This data suggested 

the therapeutic effects of OX1R antagonists in highly motivated animals. 

Therefore, in an addiction state, orexin in VP may involve some types of 
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affective psychopathology and mood disorders. OX1R activation in VP 

alters motivation for the opioid remifentanil. Orexin fibers densely 

innervate VP and regulate opioid reward. Intra-VP microinjections of the 

OX1R antagonist SB-334867 reduced motivation (enhanced demand 

elasticity) for remifentanil without changing remifentanil consumption at 

low effort. Demand elasticity demonstrates the degree of cue-induced 

remifentanil seeking that was reduced by SB-334867 into VP without 

alteration of extinction responding (153). Highly motivated rats exhibited 

higher attenuation of reinstatement behavior by SB-334867. Together, 

these discoveries display a discerning role for VP OX1R signaling in 

motivation for the opioid remifentanil. It can be concluded that orexin in 

VP increases the reward’s hedonic properties, motivation, and drug-

seeking behaviors. 

 

Bed Nucleus of the Stria Terminalis )BNST( 

BNST is a brain region involved in anxiety, fear (122, 127, 154-158), 

stress, and reward functions (128, 129). It has an important role in stress-

induced reinstatement of drug-seeking (24, 139, 143). 

Electrophysiological studies showed that chronic morphine selectively 

increases the excitatory postsynaptic currents (EPSC) mediated by AMPA 

in VTA projecting BNST neurons (159). BNST send GABAergic and 

glutamatergic projections to VTA (160-163). BNST–VTA pathway is 

involved in the cocaine locomotors-activating effects (164) and the 

expression of cocaine CPP (165). Moreover, neuropeptide S (NPS)-

containing axons reside proximal to OXA positive neurons in the 

hypothalamus, and an enormous number of these neurons express NPS 
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receptors, implying a direct connection between the two systems. 

Retrograde tracing investigations revealed that unilateral intra-

paraventricular nucleus or intra-BNST red fluorobead injection tagged 

OXA somata on both sides, indicating that NPS recruits two different 

neuronal pathways. Intra-BNST or paraventricular nucleus (PVN) 

injection of OXA comparably increased alcohol desire as hypothalamic 

NPS injection, albeit to a lower extent. This result showed that BNST is 

implicated in OXA neurocircuitry regulating the enhancement of cue-

induced reinstatement by NPS (166). In BNST, OXA induces membrane 

depolarization and action potentials that may lead to anxiety. The OXA-

induced anxiety in the BNST depends on the activity of NMDA receptors 

(167). BNST to LH pathways induces divergent emotional states (168). It 

seems that the role of orexin in BNST is mostly through effects on the 

emotional states and also the desire for drugs of abuse. OXA causes 

anxiety-like behavior via glutamatergic receptors in the BNST. The 

anxiogenic effects of OXA in the BNST also seem to be depending on 

NMDA-type glutamate receptor activity. Prior injection of the NMDA 

antagonist in the BNST inhibited the anxiety-inducing effects of OXA. 

Injections of AMPA antagonists into the BNST before OXA resulted in 

only a limited reduction of anxiety-like behaviors (167). In the passive 

avoidance tests, OXA diminished the retention time to enter the darkroom, 

representing its inhibitory effect on avoidance learning. The blockade of 

avoidance learning is presumed to be a result of the anxiolytic effect of 

OXA (169). SB-334867 reduced the somatic symptoms of withdrawal and 

diminished morphine withdrawal-induced c-Fos expression in the BNST. 

These results represent a critical role of OXA signaling, through OX1R, in 

the activation of the brain stress system in the BNST to morphine 
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withdrawal and show the involvement of orexinergic subpopulations in 

this action (170). 

 

Pedunculopontine Tegmental Nucleus and Laterodorsal Tegmental 

Nucleus  

Pedonculopontine tegmentum (PPT) and laterodorsal Tegmental Nucleus 

(LDT) are part of the mesopontine tegmentum that is modulating arousal 

and reward-driven behaviors (171-175). A bunch of research showed that 

drug-dependent behaviors relate to the LDT. Particularly, local 

pharmacological manipulations demonstrated that the acquisition and 

expression of cocaine CPP facilitated by the LDT and it also participates 

in the cocaine-primed reinstatement of drug-seeking (176, 177). In 

addition, drug-dependent behaviors are associated with the PPT (178), and 

the cocaine-primed reinstatement of drug-seeking is reduced through the 

PPT inactivation (177) . Morphine CPP and heroin self-administration are 

reduced by the PPT lesions (179, 180). It has been shown that two Gq 

protein-coupled receptors mediate orexin peptide effects (181) that are 

manifested within the LDT (120, 143, 182). In vivo, extracellular 

recordings from mouse brainstem slices indicated that orexin induced 

extended firing of LDT neurons (183). The non-cholinergic and 

cholinergic LDT neurons mediate this excitation (184, 185). Numerous 

brain areas express OX1R such as the LDT and PPT (120, 143, 186). 

Vesicular acetylcholine transporter (VAChT)-positive cholinergic neurons 

in the PPT and LDT manifested OX1R but not OX2R mRNA (187). Based 

on these findings, it seems likely that orexins and their receptors have a 

wide variety of regulatory roles within the cholinergic and monoaminergic 
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systems. Moreover, it is reported that emotional stimuli increased the 

release of orexins in the PPT, which inhibit cholinergic neurons indirectly, 

preventing muscle atonia.  

 

Dorsal Raphe 

Dorsal raphe (DR) is the main source of serotonin in the brain, containing 

GABAergic (188), glutamatergic (189), and dopaminergic neurons (190), 

and this region is mainly examined in the controlling affective state (191). 

Projection of dorsal raphe serotonin neurons to the VTA influences drug-

related behavior (192). Furthermore, instrumental behavior is reinforced 

by the selective activation of the non-serotonergic DR neurons projecting 

to the VTA being enough to elicit CPP (193, 194). However, there is a 

weak reinforcement of the activation of serotonergic DR neurons 

projecting to the VTA (194). Also, DR receives the most extreme 

orexinergic innervation. As mentioned above, similar to heterogeneous 

structures, DR has different cell types including serotonergic, GABAergic, 

and glutamatergic neurons (195).  

The orexinergic neurons of LH have a projection to serotonergic neurons 

in DR which play roles in spatial memory. Previous studies reported that 

OXA significantly stimulates serotonin-containing neurons. Furthermore, 

serotonin acts on 5-HT1B and 5-HT2C receptors in the hypothalamus and 

decreases the intake of food, especially carbohydrate intake. The OXA-

mediated LH–raphe link may be one part of a negative feedback loop that 

regulates food intake (196). Orexin through inward sodium current 

depolarizes DR neurons. Orexin increases the Ca2+ transients in 
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serotonergic DR neurons (197). It appears that orexin peptides function as 

neuromodulators in the DR. Orexin A excites serotonergic neurons in the 

dorsal raphe nucleus of the rat (198). The excitatory effect of orexin-A on 

serotonergic neurons of dorsal raphe is through synaptic communication 

by OX1R (199). Furthermore, orexin controls serotonin neurons in the 

dorsal raphe nucleus by excitatory direct and inhibitory indirect effects 

(200). 

Mesocorticolimbic dopamine reward pathway 

As a primary system, the mesocorticolimbic DA system has a pivotal role 

in motivation, reward, learning, memory, and movement (201). 

Orexinergic neurons have broad projections with midbrain DA neurons of 

the VTA and the mesocorticolimbic target regions NAc, mPFC, and 

amygdala (33, 202). Drug reward research is centered in these regions 

(203). Despite the very high levels of reactions between orexinergic 

neurons and mesocorticolimbic neurons in various brain regions, most of 

the work is done by the VTA (204). According to the Microdialysis 

studies, extracellular DA levels in the NAc are increased by abusing drugs 

and neuroadaptations due to addiction Observed in this system. VTA has 

a high density of orexin receptors on both DA-containing and GABA-

containing neurons. The LH projections of the orexin are located in the 

VTA. VTA includes a large number of the orexin-containing dense core 

vesicles suggesting non-synaptic effects. Through a direct postsynaptic 

effect, DA and non-DA neurons are activated by the orexin which exerts 

an excitatory action in the VTA. DA neurons placed in the caudomedial 

portion of the VTA can express enhanced Fos in response to intra-VTA 

orexin. Moreover, DA can be augmented at the NAc shell level, but not at 
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the NAc core level and the mPFC. NMDA receptor-mediated postsynaptic 

currents can be instigated by the intra-VTA orexin showing the importance 

of orexin in long–term neural plasticity. Reverse effects compared to VTA 

are seen in NAc. Activation of orexin receptors in the NAc leads to 

depolarization of NAc shell neurons via OX1R (205). OX1R is the 

principal receptor in the NAc that is responsible for orexin’s actions 

although both receptors are expressed in this region. 

 

Conclusion  

The orexin regulates various central nervous system processes related to 

feeding, sleep, arousal, reward processing, and drug addiction via wide-

ranging projections, its complex circuits with other neuron types, and the 

diffused distribution of orexin receptors. When orexin-containing neurons 

are injured or lost, the related neurons and orexin-containing neurons 

become imbalanced. Following the disruption of the neurotransmitter 

systems, signs of neurological disease develop. Currently, promoting the 

activity of orexin-containing neurons selectively or blocking the action of 

the orexin receptor using a receptor antagonist is a successful approach for 

neurological diseases involving the orexin/receptor system. Hence, due to 

its widespread innervation in reward brain regions, orexin has a key role 

in addictive-like behaviors. However, further research is needed to fully 

comprehend the involvement of this neuropeptide system in these 

behavioral processes. 
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Legend 

Figure 1: The structures of the orexin-A (OXA) and orexin-B (OXB). 

OXA and OXB neuropeptides derive from a common precursor gene. 

OXA is a 33 amino acid with two intrachain disulfide bonds which has 

equal affinity for both receptors (OX1R and OX2R) and a smaller one 

OXB is a linear 28 amino acid with higher affinity to OX2R.  
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